Homework 01 - Chemistry Fundamentals

Question 1	2 pts
The measurement 4.7 x 10^{-3} m could also be written as	
O 4.7 nm	
O 4.7 Mm	
O 4.7 km	
O 4.7 mm	

Question 2	2 pts
The mole concept is important in chemistry because	
it allows us to count atoms and molecules by weighing macroscopic amounts of material.	
it provides a universally accepted standard for mass.	
it establishes a standard for reaction stoichiometry.	
it allows us to distinguish between elements and compounds.	

Question 3	2 pts
How many atoms of hydrogen are contained in 2 moles of methane (CH_4) ?	
O 4.82 x 10 ²⁴ atoms	
1.20 x 10 ²⁴ atoms	
2.41 x 10 ²⁴ atoms	
O 4 atoms	

Question 4	2 pts
Which has the greatest number of hydrogen atoms?	
20g of hydrogen gas	
10 ²⁰ hydrogen atoms	
100g of a substance that is 2% H by mass	
100g of water	

Question 5

2 pts

Consider the following UNBALANCED chemical equation:

 $Ca(OH)_2(aq) + H_3PO_4(aq) \longrightarrow Ca_3(PO_4)_2(s) + H_2O(I)$

What is the coefficient for H_2O when the reaction is balanced using the smallest possible integers?

0 6			
01			
02			
03			
04			

Question 6	2 pts
When aluminum metal is heated with manganese oxide, the following reaction occ	urs:
$AI + MnO_2 \longrightarrow AI_2O_3 + Mn$	
Balance this equation. What is the sum of the coefficients of ALL species in the bal chemical equation?	lanced
0 7	
0 12	
O 10	

Question 7	2 pts
When the equation	
$PbS + O_2 \longrightarrow PbO + SO_2$	
is balanced, the coefficients are, respectively.	
○ 2, 2, 1, 2	
0 1, 2, 1, 1	
0 1, 2, 3, 3	
0 2, 3, 2, 2	

Consider the UNBALANCED reaction below.

 $\mathsf{AI}_2(\mathsf{SO}_4)_3 + \mathsf{NaOH} \longrightarrow \mathsf{AI}(\mathsf{OH})_3 + \mathsf{Na}_2\mathsf{SO}_4$

Balance this equation using the smallest possible integers. What is the sum of the coefficients in the balanced equation?

0 14			
06			
08			

0	10
0	12

Question 92 ptsWhich of the following has the greatest number of ATOMS?3.05 moles of argonThese all have the same number of atoms.3.05 moles of water3.05 moles of CH4

Question 10

If 100.0 grams of copper (Cu) completely reacts with 25.0 grams of oxygen, how much copper (II) oxide (CuO) will form from 140.0 grams of copper and excess oxygen? (Note: CuO is the only product of this reaction.)

🔘 35.00 g			
🔘 210.0 g			
🔘 160.0 g			
🔘 175.0 g			

Question 11

Consider the following reaction:

 $4Fe(s) + 3O_2(g) \longrightarrow 2Fe_2O_3(s)$

If 12.50 g of iron (III) oxide (rust) are produced from 8.74 g of iron, how much oxygen gas is needed for this reaction?

O 21.24 g			
O 3.76 g			
🔘 7.55 g			
O 8.74 g			

Question 12

2 pts

2 pts

2 pts

Upon heating, potassium chlorate produces potassium chloride and oxygen.

 $2\text{KCIO}_3 \longrightarrow 2\text{KCI} + 3\text{O}_2$

What mass of oxygen would be produced upon thermal decomposition of 25 g of potassium chlorate (KClO₃)? The molecular weight (MW) of potassium chlorate is 122.5 g/mol.

🔘 4.9 g			
🔘 9.8 g			
🔘 6.5 g			
🔘 3.3 g			

Question 13	2 pts			
Consider the following reaction:				
$CO + O_2 \longrightarrow CO_2$				
How much oxygen is required to convert 35 g of CO into CO ₂ ?				
○ 20 g				
○ 35 g				
○ 10 g				
○ 40 g				

Question 14

2 pts

Consider the following reaction:

 $N_2 + H_2 \longrightarrow NH_3$

How many MOLECULES of NH_3 can be produced from the reaction of 74.2 g of N_2 and 14.0 moles of H_2 ?

0 1.26 >	: 10 ²⁵	molecules
0 1.207	10	moleculea

3.19 x 10²⁴ molecules

4.45 x 10²⁴ molecules

5.62 x 10²⁴ molecules

Question 15

2 pts

Consider the following reaction:

 $C_6H_6 + O_2 \longrightarrow CO_2 + H_2O$

39.7 grams of C_6H_6 are allowed to react with 105.7 g of O_2 . How much CO_2 will be produced by this reaction?

O 134.4 g			
O 116.3 g			
🔘 145.3 g			
O 22.4 g			